F 3621

(Pages: 4)

Reg. No.....

B.TECH. DEGREE EXAMINATION, NOVEMBER 2014

Fifth Semester

Branch : Common to all Branches except C.S. and I.T. EN 010 501-A-ENGINEERING MATHEMATICS---IV

(Regular/Improvement/Supplementary)

[New Scheme-2010 Admission onwards]

Time : Three Hours

Maximum : 100 Marks

Part A

Answer all questions. Each question carries 3 marks.

- 1. An electrostatic field in the xy-plane is given by the potential function $\phi = 3x^2y y^3$, find the stream function.
- 2. Find the image of the circle |z-1| = 1 in the complex plane under the mapping $w = \frac{1}{2}$.
- 3. Find the real root of the equation $x^2 2x 5 = 0$ by the method of false position correct to 3 decimal places.
- 4. Solve $\frac{dy}{dx} = 1 y$, y(0) = 0 in the range $0 \le x \le 3$ by taking h = 0.1 by the modified Euler's method.
- 5. Construct the dual of the L.P.P.

Maximize $z = 4x_1 + 9x_2 + 2x_3$

subject to $2x_1 + 3x_2 + 2x_3 \le 7$, $3x_1 - 2x_2 + 4x_3 = 5$; $x_1, x_2, x_3 \ge 0$.

 $(5 \times 3 = 15 \text{ marks})$

Part B

Answer all questions. Each question carries 5 marks.

6. Show that $\sqrt{|xy|}$ is not analytic at the origin, although Cauchy-Riemann equations are satisfied at the point.

7. Find the Taylor's series expansion of $f(z) = \frac{2z^3 + 1}{z^2 + z}$ about z = i.

Turn over

- 8. Find by the iteration method, a real root of $2x \log_{10} x = 7$.
- 9. Solve $\frac{dy}{dx} = x + z$, $\frac{dz}{dx} = x y^2$ with y(0) = 2, z(0) = 1 to get y(0.1), y(0.2), z(0.1) and z(0.2) approximately by Taylor's series.
- 10. Using graphical method, solve the following L.P.P.

Maximize $z = 2x_1 + 3x_2$ subject to $x_1 - x_2 \le 2$ $x_1 + x_2 \ge 4$, $x_1, x_2 \ge 0$.

 $(5 \times 5 = 25 \text{ marks})$

Part C

Answer all questions. Each full question carries 12 marks.

11. (a) Determine the analytic function f(z) = u + iv if $u - v = \frac{\cos x + \sin x - e^{-y}}{2(\cos x - \cosh y)}$ and $f(\pi/2) = 0$.

Or

(b) Find the bilinear transformation which maps the points z = 1, i, -1 into the points w = i, 0, -i. Hence find the image of |z| < 1.

(6 marks)

- 12. (a) Prove that the function f(z) defined by $f(z) = \frac{x^3(1+i) y^3 1 i}{x^2 + y^2}$, $z \neq 0$ and f(0) = 0 is continuous and the Cauchy-Riemann equations are satisfied at the origin, yet f'(0) does not exist. (6 marks)
 - (b) Show that the transformation $w = \frac{3-z}{z-2}$ transforms the circle with center $\left(\frac{5}{2}, 0\right)$ and radius

 $\frac{1}{2}$ in the z-plane into the imaginary axis in the w-plane and the interior of the circle into the right half of the plane.

(6 marks)

13. (a) Evaluate $\int_{C} \frac{z-3}{z^2+2z+5} dz$, where C is the circle (i) |z| = 1; (ii) |z+1-i| = 2; (iii) |z+1+i| = 2. (8 marks)

(b) Determine the poles of the function $f(z) = \frac{x^2}{(z-1)^2(z+2)}$ and the residue at each pole.

(4 marks)

Or

- 14. (a) Find the Laurent's expansion of $f(z) = \frac{7z-2}{(z+1)z(z-2)}$ in the region 1 < |z+1| < 3. (5 marks)
 - (b) Show the method of residues, that $\int_0^{\pi} \frac{a}{a^2 + \sin^2 \theta} d\theta = \frac{\pi}{\sqrt{1 + a^2}}.$ (7 marks)
- 15. (a) Using Newton's iterative method, find the real root of $x \log_{10} x = 1.2$ correct to five decimal places.
 - (b) Solve by Gauss-Seidel method : 10x + 2y + z = 9 2x + 20y - 2z = -44 -2x + 3y + 10z = 22.

(6 marks)

(6 marks)

Or

- 16. (a) Find a real root of the equation $x^3 x 11 = 0$, correct to 4 decimal places using the bisection method.
 - (6 marks)
 - (b) Find the root of the equation $\cos x xe^x = 0$ by secant method correct to four decimal places. (6 marks)
- 17. Using Runge-Kutta method of fourth order, solve $\frac{dy}{dx} = yz + x$, $\frac{dz}{dx} = xz + y$ given that y(0) = 1, z(0) = -1 for y(0.2), z(0.2).

Or

- 18. Apply Milne's method, to find a solution of the differential equation $y' = x y^2$ in the range $0 \le x \le 1$ for the boundary condition y = 0 at x = 0.
- 19. (a) What is the maximization transport problem ? How do you solve it ? (3 marks)
 - (b) Using simplex method solve the LPP

Maximize $z = 5x_1 + 3x_2$ subject to $x_1 + x_2 \le 2$ $5x_1 + 2x_2 \le 10$ $3x_1 + 8x_2 \le 12$, $x_1, x_2 \ge 0$.

(9 marks)

Or

Turn over

a tracing and and a first	W ₁	W ₂	W_3	W ₄	Production of Factories
F ₁	21	16	25	13	11
\mathbf{F}_2	17	18	14	23	13
F ₃	32	27	18	41	19
Capacity of the warehouse	6	10	12	15	43

20. Find the initial basic feasible solution of the following transportation problem by Vogel's approximation method (VAM). Here, F_1 , F_2 and F_3 are factories, and W_1 , W_2 and W_3 are warehouses.

 $(5 \times 12 = 60 \text{ marks})$

1,