\qquad
\qquad

B.TECH. DEGREE EXAMINATION, NOVEMBER 2014

Fifth Semester
Branch : Common to all Branches except C.S. and I.T. EN 010 501-A-ENGINEERING MATHEMATICS--IV

(Regular/Improvement/Supplementary)
[New Scheme-2010 Admission onwards]
Time : Three Hours
Maximum : 100 Marks

Part A

Answer all questions.
Each question carries 3 marks.

1. An electrostatic field in the $x y$-plane is given by the potential function $\phi=3 x^{2} y-y^{3}$, find the stream function.
2. Find the image of the circle $|z-1|=1$ in the complex plane under the mapping $w=\frac{1}{z}$.
3. Find the real root of the equation $x^{2}-2 x-5=0$ by the method of false position correct to 3 decimal places.
4. Solve $\frac{d y}{d x}=1-y, y(0)=0$ in the range $0 \leq x \leq 3$ by taking $h=0.1$ by the modified Euler's method.
5. Construct the dual of the L.P.P.

Maximize $z=4 x_{1}+9 x_{2}+2 x_{3}$
subject to $2 x_{1}+3 x_{2}+2 x_{3} \leq 7,3 x_{1}-2 x_{2}+4 x_{3}=5 ; x_{1}, x_{2}, x_{3} \geq 0$.

$$
(5 \times 3=15 \text { marks })
$$

Part B

Answer all questions.
Each question carries 5 marks.
6. Show that $\sqrt{|x y|}$ is not analytic at the origin, although Cauchy-Riemann equations are satisfied at the point.
7. Find the Taylor's series expansion of $f(z)=\frac{2 z^{3}+1}{z^{2}+z}$ about $z=i$.
8. Find by the iteration method, a real root of $2 x-\log _{10} x=7$.
9. Solve $\frac{d y}{d x}=x+z, \frac{d z}{d x}=x-y^{2}$ with $y(0)=2, z(0)=1$ to get $y(0.1), y(0.2), z(0.1)$ and z (0.2) approximately by Taylor's series.
10. Using graphical method, solve the following L.P.P.

$$
\begin{array}{cl}
\text { Maximize } & z=2 x_{1}+3 x_{2} \\
\text { subject to } & x_{1}-x_{2} \leq 2 \\
& x_{1}+x_{2} \geq 4, \\
& x_{1}, x_{2} \geq 0 .
\end{array}
$$

Part C

Answer all questions.
Each full question carries 12 marks.
11. (a) Determine the analytic function $f(z)=u+i v$ if $u-v=\frac{\cos x+\sin x-e^{-y}}{2(\cos x-\cosh y)}$ and $f(\pi / 2)=0$.
(6 marks)
(b) Find the bilinear transformation which maps the points $z=1, i,-1$ into the points $w=i$, $0,-i$. Hence find the image of $|z|<1$.

> Or

> (6 marks)
12. (a) Prove that the function $f(z)$ defined by $f(z)=\frac{x^{3}(1+i)-y^{3} 1-i}{x^{2}+y^{2}}, z \neq 0$ and $f(0)=0$ is continuous and the Cauchy-Riemann equations are satisfied at the origin, yet $f^{\prime}(0)$ does not exist.
(6 marks)
(b) Show that the transformation $w=\frac{3-z}{z-2}$ transforms the circle with center $\left(\frac{5}{2}, 0\right)$ and radius $\frac{1}{2}$ in the z-plane into the imaginary axis in the w-plane and the interior of the circle into the right half of the plane.
(6 marks)
13. (a) Evaluate $\int_{\mathrm{C}} \frac{z-3}{z^{2}+2 z+5} d z$, where C is the circle (i) $|z|=1$; (ii) $|z+1-i|=2$; (iii) $|z+1+i|=2$.
(b) Determine the poles of the function $f(z)=\frac{x^{2}}{(z-1)^{2}(z+2)}$ and the residue at each pole.
14. (a) Find the Laurent's expansion of $f(z)=\frac{7 z-2}{(z+1) z(z-2)}$ in the region $1<|z+1|<3$. (5 marks)
(b) Show the method of residues, that $\int_{0}^{\pi} \frac{a}{a^{2}+\sin ^{2} \theta} d \theta=\frac{\pi}{\sqrt{1+a^{2}}}$.
15. (a) Using Newton's iterative method, find the real root of $x \log _{10} x=1.2$ correct to five decimal places.
(b) Solve by Gauss-Seidel method:

$$
\begin{aligned}
& 10 x+2 y+z=9 \\
& 2 x+20 y-2 z=-44 \\
& -2 x+3 y+10 z=22
\end{aligned}
$$

16. (a) Find a real root of the equation $x^{3}-x-11=0$, correct to 4 decimal places using the bisection method.
(b) Find the root of the equation $\cos x-x e^{x}=0$ by secant method correct to four decimal places.
(6 marks)
17. Using Runge-Kutta method of fourth order, solve $\frac{d y}{d x}=y z+x, \frac{d z}{d x}=x z+y$ given that $y(0)=1$, $z(0)=-1$ for $y(0.2), z(0.2)$.
Or
18. Apply Milne's method, to find á solution of the differential equation $y^{\prime}=x-y^{2}$ in the range $0 \leq x \leq 1$ for the boundary condition $y=0$ at $x=0$.
19. (a) What is the maximization transport problem? How do you solve it?
(b) Using simplex method solve the LPP

Maximize $z=5 x_{1}+3 x_{2}$
subject to $x_{1}+x_{2} \leq 2$
$5 x_{1}+2 x_{2} \leq 10$
$3 x_{1}+8 x_{2} \leq 12$,
$x_{1}, x_{2} \geq 0$.
20. Find the initial basic feasible solution of the following transportation problem by Vogel's approximation method (VAM). Here, $\mathrm{F}_{1}, \mathrm{~F}_{2}$ and F_{3} are factories, and $\mathrm{W}_{1}, \mathrm{~W}_{2}$ and W_{3} are warehouses.

	W_{1}	$\mathrm{~W}_{2}$	$\mathrm{~W}_{3}$	$\mathrm{~W}_{4}$	Production of Factories
F_{1}	21	16	25	13	11
$\mathrm{~F}_{2}$	17	18	14	23	13
$\mathrm{~F}_{3}$	32	27	18	41	19
Capacity of the warehouse	6	10	12	15	43

$$
(5 \times 12=60 \text { marks })
$$

